Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 60(22): 3083-3086, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38407363

RESUMO

With perdeuteration, solid-state NMR spectroscopy of large proteins suffers from incomplete amide-proton back-exchange. Using a 72 kDa micro-crystalline protein, we show that deuteration exclusively via deuterated amino acids, well-established in solution to suppress sidechain protonation without proton back-exchange obstacles, provides spectral resolution comparable to perdeuterated preparations at intermediate spinning frequencies.


Assuntos
Aminoácidos , Prótons , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Espectroscopia de Ressonância Magnética
2.
Adv Sci (Weinh) ; 11(11): e2307930, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38164822

RESUMO

5-Methylcytosine (5mC) is the central epigenetic mark of mammalian DNA, and plays fundamental roles in chromatin regulation. 5mC is dynamically read and translated into regulatory outputs by methyl-CpG-binding domain (MBD) proteins. These multidomain readers recognize 5mC via an MBD domain, and undergo additional domain-dependent interactions with multiple additional chromatin components. However, studying this dynamic process is limited by a lack of methods to conditionally control the 5mC affinity of MBD readers in cells. Light-control of MBD association to chromatin by genetically encoding a photocaged serine at the MBD-DNA interface is reported. The authors study the association of MBD1 to mouse pericentromeres, dependent on its CxxC3 and transcriptional repressor domains (TRD) which interact with unmethylated CpG and heterochromatin-associated complexes, respectively. Both domains significantly modulate association kinetics, arguing for a model in which the CxxC3 delays methylation responses of MBD1 by holding it at unmethylated loci, whereas the TRD promotes responses by aiding heterochromatin association is studied. Their approach offers otherwise inaccessible kinetic insights into the domain-specific regulation of a central MBD reader, and sets the basis for further unravelling how the integration of MBDs into complex heterochromatin interaction networks control the kinetics of 5mC reading and translation into altered chromatin states.


Assuntos
Cromatina , Proteínas de Ligação a DNA , Animais , Camundongos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , 5-Metilcitosina , Heterocromatina , Metilação de DNA , Fatores de Transcrição/genética , DNA/metabolismo , Mamíferos/metabolismo
3.
Angew Chem Int Ed Engl ; 63(5): e202313947, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-37974542

RESUMO

The possible internal dynamics of non-isotope-labeled small-molecule ligands inside a target protein is inherently difficult to capture. Whereas high crystallographic temperature factors can denote either static disorder or motion, even moieties with very low B-factors can be subject to vivid motion between symmetry-related sites. Here we report the experimental identification of internal µs timescale dynamics of a high-affinity, natural-abundance ligand tightly bound to the enzyme human carbonic anhydrase II (hCAII) even within a crystalline lattice. The rotamer jumps of the ligand's benzene group manifest themselves both, in solution and fast magic-angle spinning solid-state NMR 1 H R1ρ relaxation dispersion, for which we obtain further mechanistic insights from molecular-dynamics (MD) simulations. The experimental confirmation of rotameric jumps in bound ligands within proteins in solution or the crystalline state may improve understanding of host-guest interactions in biology and supra-molecular chemistry and may facilitate medicinal chemistry for future drug campaigns.


Assuntos
Proteínas , Humanos , Ressonância Magnética Nuclear Biomolecular , Domínio Catalítico , Ligantes , Proteínas/química , Espectroscopia de Ressonância Magnética
4.
J Phys Chem Lett ; 14(7): 1725-1731, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36757335

RESUMO

Understanding macromolecular function, interactions, and stability hinges on detailed assessment of conformational ensembles. For solid proteins, accurate elucidation of the spatial aspects of dynamics at physiological temperatures is limited by the qualitative character or low abundance of solid-state nuclear magnetic resonance internuclear distance information. Here, we demonstrate access to abundant proton-proton internuclear distances for integrated structural biology and chemistry with unprecedented accuracy. Apart from highest-resolution single-state structures, the exact distances enable molecular dynamics (MD) ensemble simulations orchestrated by a dense network of experimental interproton distance boundaries gathered in the context of their physical lattices. This direct embedding of experimental ensemble distances into MD will provide access to representative, atomic-level spatial details of conformational dynamics in supramolecular assemblies, crystalline and lipid-embedded proteins, and beyond.


Assuntos
Proteínas , Prótons , Proteínas/química , Simulação de Dinâmica Molecular , Espectroscopia de Ressonância Magnética , Conformação Molecular
5.
J Phys Chem Lett ; 13(7): 1644-1651, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35147439

RESUMO

Owing to fast-magic-angle-spinning technology, proton-detected solid-state NMR has been facilitating the analysis of insoluble, crystalline, sedimented, and membrane proteins. However, potential applications have been largely restricted by limited access to side-chain resonances. The recent availability of spinning frequencies exceeding 100 kHz in principle now allows direct probing of all protons without the need for partial deuteration. This potentiates both the number of accessible target proteins and possibilities to exploit side-chain protons as reporters on distances and interactions. Their low dispersion, however, has severely compromised their chemical-shift assignment, which is a prerequisite for their use in downstream applications. Herein, we show that unambiguous correlations are obtained from 5D methodology by which the side-chain resonances are directly connected with the backbone. When further concatenated with simultaneous 4D intra-side-chain correlations, this yields comprehensive assignments in the side chains and hence allows a high density of distance restraints for high-resolution structure calculation from minimal amounts of protein.

6.
Chem Commun (Camb) ; 55(55): 7899-7902, 2019 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-31199417

RESUMO

Fast-magic-angle-spinning solid-state NMR is a developing technique for determination of protein structure and dynamics. Proton-proton correlations usually lead to rough distance restraints, a serious hurdle towards high-resolution structures. Analogous to the "eNOE" concept in solution, an integrative approach for more accurate restraints enables improved structural accuracy with minimal analytical effort.


Assuntos
Anidrase Carbônica II/química , Espectrina/química , Animais , Galinhas , Humanos , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular/métodos , Domínios de Homologia de src
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...